Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Hippocampus ; 33(3): 197-207, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36374115

RESUMO

Environmental factors are well-accepted to play a complex and interdependent role with genetic factors in learning and memory. The goal of this study was to examine how environmental conditions altered synaptic plasticity in hippocampal area CA2. To do this, we housed adult mice for 3 weeks in an enriched environment (EE) consisting of a larger cage with running wheel, and regularly changed toys, tunnels and treats. We then performed whole-cell or extracellular field recordings in hippocampal area CA2 and compared the synaptic plasticity from EE-housed mice with slices from littermate controls housed in standard environment (SE). We found that the inhibitory transmission recruited by CA3 input stimulation in CA2 was significantly less plastic in EE conditions as compared to SE following an electrical tetanus. We demonstrate that delta-opioid receptor (DOR) mediated plasticity is reduced in EE conditions by direct application of DOR agonist. We show that in EE conditions the overall levels of GABA transmission is reduced in CA2 cells by analyzing inhibition of ErbB4 receptor, spontaneous inhibitory currents and paired-pulse ratio. Furthermore, we report that the effect of EE of synaptic plasticity can be rapidly reversed by social isolation. These results demonstrate how the neurons in hippocampal area CA2 are sensitive to environment and may lead to promising therapeutic targets.


Assuntos
Hipocampo , Plasticidade Neuronal , Camundongos , Animais , Hipocampo/fisiologia , Aprendizagem , Neurônios , Isolamento Social , Transmissão Sináptica
2.
Neuron ; 110(17): 2854-2866.e4, 2022 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-35858622

RESUMO

Area CA2 is a critical region for diverse hippocampal functions including social recognition memory. This region has unique properties and connectivity. Notably, intra-hippocampal excitatory inputs to CA2 lack canonical long-term plasticity, but inhibitory transmission expresses a long-term depression mediated by Delta-opioid receptors (DOR-iLTDs). Evidence indicates that DOR-iLTDs are insufficient to underlie social coding. Here, we report a novel inhibitory plasticity mediated by cannabinoid type 1 receptor activation (CB1R-iLTD). Surprisingly, CB1R-iLTD requires previous induction of DOR-iLTDs, indicating a permissive role for DOR plasticity. Blockade of CB1Rs in CA2 completely prevents social memory formation. Furthermore, the sequentiality of DOR- and CB1R-mediated plasticity occurs in vivo during successive social interactions. Finally, CB1R-iLTD is altered in a mouse model of schizophrenia with impaired social cognition but is rescued by a manipulation that also rescues social memory. Altogether, our data reveal a unique interplay between two inhibitory plasticities and a novel mechanism for social memory formation.


Assuntos
Hipocampo , Plasticidade Neuronal , Animais , Camundongos , Plasticidade Neuronal/fisiologia , Receptor CB1 de Canabinoide , Reconhecimento Psicológico
3.
iScience ; 25(3): 103895, 2022 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-35243253

RESUMO

Parvalbumin (PV)-expressing interneurons which are often associated with the specific extracellular matrix perineuronal net (PNN) play a critical role in the alteration of brain activity and memory performance in Alzheimer's disease (AD). The integrity of these neurons is crucial for normal functioning of the hippocampal subfield CA2, and hence, social memory formation. Here, we find that social memory deficits of mouse models of AD are associated with decreased presence of PNN around PV cells and long-term synaptic plasticity in area CA2. Furthermore, single local injection of the growth factor neuregulin-1 (NRG1) is sufficient to restore both PV/PNN levels and social memory performance of these mice. Thus, the PV/PNN disruption in area CA2 could play a causal role in social memory deficits of AD mice, and activating PV cell pro-maturation pathways may be sufficient to restore social memory.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...